quinta-feira, 15 de agosto de 2019



Difusão ambipolar é a difusão de partículas positivas e negativas em um plasma a uma mesma taxa devido a uma interação através do campo elétrico. É intimamente relacionada ao conceito de quase neutralidade.
Na maioria dos plasmas as forças atuando sobre os íons são diferentes daquelas atuando sobre os elétrons, ingenuamente se esperaria que uma espécie fosse ser transportada mais rapidamente que a outro, seja por difusão ou convecção ou algum outro processo. Se tal transporte diferencial tem uma divergência, então resultará numa alteração na densidade de carga, que em troca criará um campo elétrico que irá alterar o transporte de uma ou duas espécies de tal forma que se tornem iguais.
O exemplo mais simples é um plasma localizado em um vácuo não magnetizado. (Ver fusão em confinamento inercial.) Tanto elétrons quanto íons irá fluir para o exterior com suas respectivas velocidades térmicas. Se os íons são relativamente frios, sua velocidade térmica será pequena. A velocidade térmica dos elétrons irá ser alta devido a sua alta temperatura e pequena massa: . Como os elétrons deixam o volume inicial, deixarão para trás uma densidade de íons de carga positiva, o que resultará em um campo elétrico com direção ao exterior. Este campo irá atuar sobre os elétrons atrasando-os e sobre os íons acelerando-os. O resultado em balanço é que tanto íons quanto os elétrons fluem para fora na velocidade do som, o que é muito menor que a velocidade térmica dos elétrons, mas normalmente muito maior que a a velocidade térmica dos íons.

Difusão ambipolar em astrofísica[editar | editar código-fonte]

Em astrofísica, "difusão ambipolar" refere-se especificamente ao desacoplamento de partículas neutras de plasma na fase inicial de formação de estrelas. As partículas neutras neste caso são principalmente moléculas de hidrogênio na nuvem que sofrerá colapso gravitacional se não fosse colisionalmente acoplada ao plasma. O plasma é composto de íons (principalmente prótons) e elétrons, que são ligadas ao campo magnético interestelar e portanto resistem ao colapso. Em uma nuvem molecular onde a ionização fracional é muito baixa (uma parte por milhão ou menos), partículas neutras apenas raramente encontram partículas carregadas, e assim são não retardarão seu colapso em uma estrela.[1][2][3][4]
O estudo da difusão ambipolar no processo de formação das estrelas tem implicação para cálculos das escalas de tempos envolvidas na sua formação.[5]









X
ENERGIA DE GRACELI = ENERGIA X POTENCIAIS X


x
TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

 +

   +   

  ,      +   

  +

+     


X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


X

x
TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

 +

   +   

  ,      +   

  +

+     


X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D



Difusão de Bohm é a difusão de plasma através de um campo magnético com um coeficiente de difusão igual a
,
X

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

 +

   +   

  ,      +   

  +

+     


X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
onde B é a intensidade do campo magnético, T é a temperatura, e e é a carga elementar.
Foi primeiramente observada em 1949 por David BohmE. H. S. Burhop, e Harrie Massey enquanto estudavam arcos magnéticos para uso em separação de isótopos.[1] Desde então tem sido observado que muitos outros plasmas seguem esta lei. Felizmente há exceções, onde a taxa de difusão é menor, caso contrário, não haveria esperança de alcançar energia de fusão prática.[2]
Geralmente a difusão pode ser modelada como um passeio aleatório de passos de comprimento δ e tempo τ. Se a difusão é colisional, então δ é o percurso livre médio e τ é o inverso da frequência de colisões. O coeficiente de difusão D pode ser expresso de várias formas, como
X

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

 +

   +   

  ,      +   

  +

+     


X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
onde v = δ/τ é a velocidade entre colisões.[3][4]
Em um plasma magnetizado, a frequência de colisões é geralmente pequena em comparação com a girofrequência, sendo que a medida do passo é a precessão de Larmor(também chamado de giroraio) ρ e o tempo do passo é o inverso da frequência de colisões ν, conduzindo a D = ρ²ν. Se a frequência de colisões é maior que a girofrequência, então as partículas podem ser consideradas movendo-se livremente com a velocidade térmica vth entre colisões, e o coeficiente de difusão toma a forma D = vth²/ν. Evidentemente a difusão clássica (colisional) é máxima quando a frequência de colisões é igual à girofrequência, no caso D = ρ²ωc = vth²/ωc. Substituindo ρ = vthcvth = (kBT/m)1/2, e ωc = eB/m, chega-se a D = kBT/eB, que é a escala de Bohm. Considerando a natureza aproximada desta derivação, os 1/16 perdidos não são motivo de preocupação. Portanto, pelo menos dentro do fator da ordem de unidade, a difusão de Bohm é sempre maior do que a difusão clássica.
No regime de colisionalidade baixa trivial, a difusão clássica é proporcional a 1/B², comparada com a dependência de 1/B da difusão de Bohm. Esta distinção é frequentemente usada para distinguir entre as duas.
À luz dos cálculos acima, é tentador pensar que a difusão de Bohm como difusão clássica com uma taxa de colisão anômala que maximiza a taxa de transporte, mas a imagem física é diferente. Difusão anômala é o resultado de turbulência. Regiões de potencial elétrico mais alto ou mais baixo resultam em turbilhonamentos (vórtices) porque o plasma move-se com a velocidade de deriva de E através de B igual a E/B. Esses vórtices desempenham um papel semelhante ao da giro-órbita na difusão clássica, exceto que a física da turbulência pode ser tal que o tempo de decorrelação é aproximadamente igual ao tempo tempo de retorno, resultando na escala de Bohm.




difusividade magnética é um parâmetro em física de plasma. Ela aparece no número de Reynolds magnético. A difusividade magnética é definida como[1][2]:
.
X

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

 +

   +   

  ,      +   

  +

+     


X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
  •  é a permeabilidade do espaço livre.
  •  
  • X

  • TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

     +

       +   

      ,      +   

      +

    +     


    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

  • é a condutividade do plasma devido a colisões de Coulomb ou neutras.
    •  é a densidade de elétrons.
    •  é a carga do elétron.
    •  é a massa do elétron.
    •  é a frequência de colisão.